翻訳と辞書
Words near each other
・ Petko Yankov
・ Petkov
・ Petkov Nunatak
・ Petkovac
・ Petkovac, Bosnia and Herzegovina
・ Petkovce
・ Petkovec
・ Petkovec Toplički
・ Petkovica (Šabac)
・ Petkovica monastery
・ Petković
・ Petkovići
・ Petkovski
・ Petkovtsi, Gabrovo Province
・ Petkovy
Petkovšek's algorithm
・ Petkuh
・ Petkus
・ Petlad
・ Petlad (Vidhan Sabha constituency)
・ Petlalcingo (municipality)
・ Petland
・ Petland Discounts
・ Petlawad
・ Petlawad explosion
・ Petleshkovo
・ Petley
・ Petley (1802 cricketer)
・ Petley Price
・ Petley, Newfoundland and Labrador


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Petkovšek's algorithm : ウィキペディア英語版
Petkovšek's algorithm
Petkovšek's algorithm is a computer algebra algorithm that computes a basis of hypergeometric terms solution of its input linear recurrence equation with polynomial coefficients. Equivalently, it computes a first order right factor of linear difference operators with polynomial coefficients. This algorithm is implemented in all the major computer algebra systems.
== Examples ==

* Given the linear recurrence
:4(n+2)(2n+3)(2n+5)a(n+2)
-12(2n+3)(9n^2+27n+22)a(n+1)
+81(n+1)( 3n+2)(3n+4) a(n) =0,
the algorithm finds two linearly independent hypergeometric terms that are solution:
: \left( } \right) ^},\qquad \left( } \right) ^}.
(Here, \Gamma denotes Euler's Gamma function.) Note that the second solution is also a binomial coefficient \binom, but it is not the aim of this algorithm to produce binomial expressions.
* Given the sum
:a(n)=\sum_^n^2\binom^2},
coming from Apéry's proof of the irrationality of \zeta(3), Zeilberger's algorithm computes the linear recurrence
:(n+2)^3a(n+2)-(17n^2+51n+39)(2n+3)a(n+1)+(n+1)^3a(n)=0.
Given this recurrence, the algorithm does not return any hypergeometric solution, which proves that a(n) does not simplify to a hypergeometric term.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Petkovšek's algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.